2021考研数学,不等式证明的7种方法

  • 来源: 学府考研
  • 浏览: 1674
  • 2020-03-18
我要分享:
摘要:更多考研资讯信息、公共课、专业课备考资料、直播通知可关注学府考研官网或进交流群:602865719、微信:ixuefukaoyan,与研友互动,共上岸。

  同学们,计划备考2021考研的考生,现在开始就应该开始复习考研数学了,考研数学对于很多考生来说都比较难,所以更应该提早进行复习。

  1. 拉格朗日中值定理适用于已知函数导数的条件,证明涉及函数(值)的不等式;

  2. 泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式;

  3. 应用函数的单调性定理证明:(1)对于证明数的大小比较的不等式,转化为同一函数在区间两端点函数(或极 限)值大小的比较,利用函数在区间上的单调性进行证明;(2)对于证明函数大小比较的不等式,转化为同一个函数在区间内的任意一点函数值与区间端点函数(或极 限)值大小的比较,利用函数在区间上的单调性进行证明;

  4. 利用函数最大值、最小值证明不等式。把待证的不等式转化为区间上任意一点函数值与区间上某点x出的函数值大小的比较,然后证明(fx)为最大值或最小值,即可证不等式成立;

  5. 利用函数取到唯一的极值证明不等式。把待证的不等式转化为区间上任意一点函数值与区间内某点x处的函数值大小的比较,然后证明(fx)为唯一的极值且为极大值或极小值,即(fx)为最大值或最小值,即可证不等式成立;

  6. 用柯西中值定理证明不等式;

 

  7. 利用曲线的凹凸性证明不等式。

好成绩,从选择好老师开始

赵宇 考研政治

全国优秀高端教育品牌学府考研精品课研发团队,旨在为每一位考研学子提供最有效、最贴近实战的考研辅导课程

立即预约

热门专题

已有2015名学员在学府学习

你想学什么?写出来

Copyright© 2009-2020 北京学之府教育科技有限责任公司 (xuefu.com) All Rights Reserved

陕ICP备18002389号-10